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Abstract

Heat exchangers are used in industrial processes to recover heat between two process fluids. Although the necessary equations for heat
transfer and the pressure drop in a double pipe heat exchanger are available, using these equations the optimization of the system cost is
laborious. In this paper the optimal design of the exchanger has been formulated as a geometric programming with a single degree of
difficulty. The solution of the problem yields the optimum values of inner pipe diameter, outer pipe diameter and utility flow rate to be
used for a double pipe heat exchanger of a given length, when a specified flow rate of process stream is to be treated for a given inlet to
outlet temperature.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Heat transfer equipment is defined by the function it
fulfills in a process. The objective of any such equipment
is to maximize the heat transferred between the two flu-
ids. However, the problem that occurs is that the param-
eters which increase the heat transfer also increase the
pressure drop of the fluid flowing in a pipe which
increases the cost of pumping the fluid. Therefore, a
design which increases the heat transferred, but simulta-
neously could keep the pressure drop of the fluid flowing
in the pipes to permissible limits, is very necessary. A
common problem in industries is to extract maximum
heat from a utility stream coming out of a particular
process, and to heat a process stream. A solution to
extract the maximum heat could have been to increase
the heat transfer area or to increase the coolant flow rate
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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but both the solutions increase the cost of pumping so
increasing these parameters without pressure drop con-
siderations is not advisable. Traditional design method
of heat exchangers involves the consideration of all the
design variables with a laborious procedure of trial and
error, taking all possible variations into consideration.
Though this time consuming procedure can be reduced
somewhat by making some reasonable assumptions as
described by [6], but still no convenient method has been
developed for optimal design of double pipe heat
exchangers. In other optimum design methods, such as
Lagrange multiplier method, the optimum results are
again obtained in a long time by changing one variable
at a time and using a trial-error or a graphical method.

In the current literature (for example, [8]), focus is on
optimizing the area of the heat exchanger irrespective of
the different flow rates of the utility that can be used.
Using this pressure drop is not minimized to the fullest
extent. This fact can be avoided through the design
method discussed in the paper. We have considered the
design of a double pipe heat exchanger in which its cost
is optimized by considering three main parameters – the

mailto:swamifce@iitr.ernet.in
mailto:nitinagg.iitr@gmail.com
mailto:nitinagg.iitr@gmail.com
mailto:vijayaggarwal2@gmail.com


Inner pipe

Nomenclature

Notation

A constant (J/m0.2 s K)
ap flow area of inner pipe (m2)
Re0a Reynolds number for pressure drop (Nondimen-

sional)
As surface area for the heat transfer (m2)
aa flow area of annulus (m2)
B constant (J/s0.2 m0.2 kg0.8 K)
C constant (kg m2.75/s2)
Cp specific heat of fluid flowing in pipe (J/kg K)
d diameter of inner pipe (m)
D diameter of outer pipe (m)
De equivalent diameter (m)
E constant (m2.75/s0.25 kg0.75)
F constant (m2/kg)
f friction factor (Nondimensional)
g gravitational acceleration (m/s2)
Ga mass velocity of fluid in the annulus (kg/m2s)
Gp mass velocity of fluid in the inner pipe (kg/m2s)
hi heat transfer coefficient of inner pipe (J/m2 s K)
ho heat transfer coefficient of annulus (J/m2 s K)
ka thermal conductivity of the fluid flowing in the

annulus (J/s mK)
kp thermal conductivity of the fluid flowing in the

inner pipe (J/s mK)
L total pipe length (m)
lhp length of one hairpin (m)
m mass flow rate of fluid flowing in the inner pipe

(kg/s)

Q heat transfer rate (J/s)
Q* required heat transfer rate (J/s)
Rea Reynolds number for annulus (–)
Rep Reynolds number for inner pipe (–)
T temperature of the process stream (K)
t temperature of the utility (K)
Uc overall clean coefficient (J/m2 s K)
w mass flow rate of fluid flowing in the annulus

(kg/s)
x D2 � d2 (m2)
y D + d (m)
DT temperature difference (K)
lp viscosity of fluid flowing in the inner pipe (kg/

ms)
la viscosity of fluid flowing in the annulus

(kg/ms)
lwp viscosity of fluid in the inner pipe at wall tem-

perature (kg/ms)
lwa viscosity of fluid in the annulus at wall temper-

ature (kg/ms)
q fluid mass density (kg/m3)

Suffixes

1 inlet
2 outlet
a annulus
io outer surface of inner pipe
LM log mean
p inner pipe
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inner and outer diameter of the heat exchanger and the
flow rate of the utility. The design of the exchanger
has been formulated as a geometric programming with
a single degree of difficulty. It is assumed that the flow
rate, the inlet and the required outlet temperature of
the process fluid and the inlet temperature of the utility
are known for the specific design of the exchanger.
hi

d

D

Outer pipe
hio

Fig. 1. Cross sectional view of the double pipe heat exchanger.
2. Analytical considerations

2.1. Equations for heat transfer coefficients for fluids in pipes

Sieder and Tate [3] gave the following equation for both
heating and cooling of a number of fluids in pipes:

hi ¼
0:027

d
kpRe0:8

p

Cplp

kp

� �1
3 lp

lwp

 !0:14

ð1Þ

where hi is the heat transfer coefficient at the inner surface
of inner pipe; d the inner pipe diameter (see Fig. 1); kp the
thermal conductivity of the fluid flowing in the inner pipe;
Cp the specific heat of fluid flowing in inner pipe; lp the vis-
cosity of fluid flowing in the inner pipe; lwp the viscosity of
fluid in the inner pipe at wall temperature; and Rep the
Reynolds number for inner pipe given by
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Rep ¼
dGp

lp

ð2Þ

wherein Gp is the mass velocity of fluid in the inner pipe
given by

Gp ¼
m
ap

ð3Þ

wherein m is the mass flow rate of fluid flowing in the inner
pipe; and ap the flow area of inner pipe given by

ap ¼
p
4

d2 ð4Þ

Combining Eqs. (1)–(4), the following equation is
obtained:

hi ¼
Am0:8

d1:8
ð5Þ

where

A ¼ 0:032756kp

1

lp

 !0:8
Cplp

kp

� �1
3 lp

lwp

 !0:14

ð6Þ

It is assumed that the process stream is pumped in the outer
pipe and its flow rate is a known quantity, thus constant for
a given problem. However the utility is taken in the inner
pipe and its flow rate can be varied so that the required
heat transfer is achieved. The thickness of the inner and
the outer pipes is also considered negligible with respect
to their diameters. Further, as all the other variables are
the fluid properties, they are constant for a given fluid.
Thus, the heat transfer coefficient of the inner pipe is
dependent on its diameter and the flow rate of the utility
only for a heat exchanger of given length.

The equivalent diameter De for heat transfer in the outer
pipe is given by

De ¼
D2 � d2

d
ð7Þ

where D is the diameter of outer pipe (See Fig. 1). Using [3]
equation for calculating the heat transfer coefficient of the
outer pipe one gets

hio ¼
0:027

De

kaRe0:8
a

Cpala

ka

� �1
3 la

lwa

� �0:14

ð8Þ

where hio is the heat transfer coefficient at the outer surface
of the inner pipe; ka the thermal conductivity of the fluid
flowing in the annulus; Cpa the specific heat of fluid flowing
in annulus; la the viscosity of fluid flowing in the annulus;
lwa the viscosity of fluid in the annulus at outer pipe wall
temperature; and Rea the Reynolds number for the annu-
lus, given by

Rea ¼
DeGa

la

ð9Þ

where Ga is the mass velocity of fluid in the outer pipe,
given by
Ga ¼
w
aa

ð10Þ

wherein w is the mass flow rate of fluid flowing in the annu-
lus; and aa the flow area of annulus, given by

aa ¼
p
4
ðD2 � d2Þ ð11Þ

Further using Eqs. (7)–(11)

hio ¼
Bd0:2

x
ð12Þ

where

x ¼ D2 � d2 ð13Þ

B ¼ 0:032756ka

w
la

� �0:8 Cpala

ka

� �1
3 la

lwa

� �0:14

ð14Þ

Therefore, the heat transfer coefficient of the outer pipe, for
a given length of heat exchanger, depends only upon the
diameters of both the pipes, other variables being constant
for the given process stream.

2.2. Equation for pressure drop in the pipes

The pressure drop allowance in an exchanger is the sta-
tic fluid pressure which may be expended to drive the fluid
through the exchanger. The pressure that is supplied for the
circulation of a fluid should overcome frictional losses
caused by connecting exchangers in series and the pressure
drop in the exchangers itself. The pressure drop in pipes
can be computed from the Darcy-Weisbach equation.
Therefore, pressure drop Dpp in the length L of the inner
pipe is given by

Dpp ¼
fpLG2

p

2qpd
ð15Þ

where fp is the friction factor for the inner pipe; and qp the
mass density of the inner fluid. Assuming inner pipe to be
smooth, fpis given by Blasius equation

fp ¼
0:316

Re0:25
p

2:1� 103 < Rep < 105 ð16Þ

Using (2)–(4), (15) and (16), the pressure drop is

Dpp ¼
0:24113l0:25

p m1:75L

qpd4:75
ð17Þ

The power required by the pump to overcome the pressure
drop is

P p ¼
m
qp

Dpp ð18Þ

Rewriting Eq. (18) using Eq. (17)

P p ¼
0:24113l0:25

p m2:75L

q2
pd4:75

ð19Þ

Similarly, the pressure drop in the annulus, Dpa is
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Fig. 2. Four double pipe heat exchangers in series.
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Dpa ¼
faG2

aL
2qaD0e

ð20Þ

where qa is the mass density of the outer fluid; D0e ¼ the
equivalent diameter for flow resistance, given by

D0e ¼ D� d ð21Þ

fa is the friction factor for the outer pipe; given by Blasius
equation

fa ¼
0:316

ðRe0aÞ
0:25

2:1� 103
6 Re0a 6 105 ð22Þ

wherein Re0a ¼ Reynolds number, given by

Re0a ¼
D0eGa

la

ð23Þ

Combining Eqs. (10) and (11) the mass velocity of fluid in
the outer pipe is

Ga ¼
4w

pðD2 � d2Þ
ð24Þ

Putting Eqs. (21)–(24) in Eq. (20)

Dpa ¼
0:24113l0:25

a y1:25w1:75L
qax3

ð25Þ

where

y ¼ Dþ d ð26Þ

The power required to pump the fluid against this pressure
drop is

P a ¼
w
qa

Dpa ð27Þ

Rewriting Eq. (27) using Eq. (25)

P a ¼
0:24113l0:25

a y1:25w2:75L
q2

ax3
ð28Þ

Adding Eqs. (17) and (25), the overall pressure drop in the
heat exchanger is given by

Dp ¼
0:24113l0:25

p m1:75L

qpd4:75
þ 0:24113l0:25

a y1:25w1:75L
qax3

ð29Þ

where entrance and exit losses have been neglected.
Adding Eqs. (19) and (28) the total power P, which has

to be expended to drive the fluid through the exchanger, is

P ¼ Cm2:75

d4:75
þ E

x3
ð30Þ

where

C ¼
0:24113l0:25

p L

q2
p

ð31Þ

E ¼ 0:24113l0:25
a w2:75y1:25L
q2

a

ð32Þ
2.3. Equation for the heat transferred between the two pipes

Let T1 and T2 be the inlet and the required outlet tem-
perature of the process stream and t1 and t2 be the inlet
and the assumed outlet temperature of the utility. See
Fig. 2. The integrated steady state modification of Fou-
rier’s general equation is

Q ¼ U cAsDT LM ð33Þ

where Q is the heat transferred between the fluids per unit
time; Uc the overall clean coefficient; As the surface area for
the heat transfer, given by

As ¼ pdL ð34Þ

and DTLM = log mean temperature difference assuming
counterflow

DT LM ¼
ðT 1 � t2Þ � ðT 2 � t1Þ

ln½ðT 1 � t2Þ=ðT 2 � t1Þ�
ð35Þ

It is assumed that the thickness of the pipes is negligibly
small as compared to the inner diameter of the inner pipe.
Overall clean coefficient Uc can be obtained independently
of the Fourier equation from the two heat transfer coeffi-
cients. Neglecting pipe wall resistance the following equa-
tion is obtained:

1

U c

¼ 1

hi

þ 1

h0

ð36Þ

Using Eqs. (34)–(36), (33) changes to

1

Q
¼ 1

hi

þ 1

hio

� �
1

pdLDT LM

ð37Þ

Using Eqs. (5), (12), (37) changes to

1

Q
¼ d1:8

Am0:8
þ x

Bd0:2

� �
1

pdLDT LM

ð38Þ

Also, because heat is conserved, the heat lost by the hotter
stream is equal to the heat gained by the coolant. Hence,

Q ¼ mCpðt1 � t2Þ ð39Þ
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and

Q ¼ wCpaðT 2 � T 1Þ ð40Þ
3. Objective function

It is desired to operate close to a standard heat transfer
rate Q0 but on account of increase in pressure we settle for
a lesser value Q. Thus, the ratio Q*/Q being greater than
unity, has to be minimized. Similarly, the minimum pumping
power required in the process could have been P*, but one
has to settle at a larger pumping power P, so that the heat
transferred can be increased; and as a result the ratio P/P*

has to be decreased. Also it would have been preferred had
the utility pumped was minimum given by m*, but again to
increase the heat transferred more utility is used in the pro-
cess (a similar approach for optimizing the performance of
a furnace can be found in [2]). Therefore, the objective func-
tion F, which is to be minimized, is selected as

F 1 ¼
Q0C1

Q
þ P pC02 þ P aC03

P 0
þ m

m0
C3 ð41Þ

where C1;C
0
2, C03 and C3 are the coefficients having mone-

tary units. The first term on the Right hand side is the cost
related with the external heat provided by the utility. The
second term is related with the cost required to provide
the power to pump the fluids. The last term is the cost of
the utility used.

Also C02 � C03. Therefore writing these two costs as C2,
Eq. (41) becomes

F 1 ¼
Q0

Q
C1 þ

P
P 0

C2 þ
m
m0

C3 ð42Þ

It is assumed that in long run the capital cost of the heat
exchanger employed is not that significant as compared
to the operating cost. Therefore to calculate the minimum
cost of the heat exchanger the focus will be laid on mini-
mizing this function.

Using Eqs. (30), (38), (42) changes to

F 1 ¼ A0d0:8m�0:8 þ B0xd�1:2 þ C0m2:75d�4:75 þ E0x�3 þ F 0m

ð43Þ

where

A0 ¼ Q0C1

pLDT LMA
ð44Þ

B0 ¼ Q0C1

pLDT LMB
ð45Þ

C0 ¼ CC2

P 0
ð46Þ

E0 ¼ EC2

P 0
ð47Þ

F 0 ¼ C3

m0
ð48Þ

Eq. (43) is in the form of a posynomial (positive polynomial).
Thus the minimization of Eq. (43) boils down to a geometric
programming problem with a single degree of difficulty (see
[1]). The contributions of various terms of Eq. (43) are de-
fined by the weights w1, w2, w3, w4 and w5 (see [5]), given by

w1 ¼ A0d0:8m�0:8F �1
1 ð49Þ

w2 ¼ B0xd�1:2F �1
1 ð50Þ

w3 ¼ C0m2:75d�4:75F �1
1 ð51Þ

w4 ¼ E0x�3F �1
1 ð52Þ

w5 ¼ F 0mF �1
1 ð53Þ

The dual objective function F2 of Eq. (43) is written as

F 2 ¼
A0d0:8

m0:8w1

� �w1 B0x

d1:2w2

� �w2 C0m2:75

d4:75w3

� �w3 E0

x3w4

� �w4 F 0m
w5

� �w5

ð54Þ

The orthogonality condition of Eq. (43) for d, x and w are

d: 0:8w�1 � 1:2w�2 � 4:75w�3 ¼ 0 ð55Þ
x: w�2 � 3w�4 ¼ 0 ð56Þ
w: �0:8w�1 þ 2:75w�3 þ w�5 ¼ 0 ð57Þ

whereas the normality condition of Eq. (43) is

w�1 þ w�2 þ w�3 þ w�4 þ w�5 ¼ 1 ð58Þ

where * corresponds to optimality. Solving Eqs. (55)–(58)
for w�1;w

�
2;w

�
3 and w�4, one gets

w�1 ¼ �3:9655w�5 þ 1:5517 ð59Þ
w�2 ¼ 3:3621w�5 � 0:7524 ð60Þ
w�3 ¼ �1:5172w�5 þ 0:4514 ð61Þ
w�4 ¼ 1:1207w�5 � 0:2508 ð62Þ

Substituting Eqs. (55)–(58) in Eq. (54), and simplifying, the
optimal dual F �2 is

F �2 ¼
0:2503ðw�5� 0:2238Þ1:0032

ð0:3913�w�5Þ
1:5517ð0:2975�w�5Þ

0:4514

A01:5517C00:4514

B00:7524E00:2508

� 6:6260ð0:3913�w�5Þ
3:9655ð0:2975�w�5Þ

1:5172

ðw�5� 0:2238Þ4:4828w�5

B03:3621E01:1207F 0

A03:9655C01:5172

" #w�
5

ð63Þ

The dual function given by Eq. (63) depends on the optimal
weight w�5, which can be obtained by differentiating Eq. (63)
with respect to w�5, equating it to zero, and simplifying.
Considering the complexity of Eq. (63), it can be seen that
this approach is prohibitive. Alternatively, equating the
factor having exponent w�5, on right hand side of Eq. (63)
to unity the optimality condition is obtained as ([4])

6:6260ð0:3913�w�5Þ
3:9655ð0:2975�w�5Þ

1:5172

ðw�5� 0:2238Þ4:4828w�5

B03:3621E01:1207F 0

A03:9655C01:5172
¼ 1

ð64Þ

Eq. (64) is written as

M ¼ 6:6260ð0:3913� w�5Þ
3:9655ð0:2975� w�5Þ

1:5172

ðw�5 � 0:2238Þ4:4828w�5
ð65Þ
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where M is a parameter given by

M ¼ A03:9655C01:5172

B03:3621E01:1207F 0
ð66Þ

Eq. (66) is an implicit equation in w�5. For practical ranges
of M it can be fitted to the following explicit form in w�5:

w�5 ¼ 0:2975� 0:0737

1þ 4:2M�0:277
ð67Þ

Using Eqs. (63) and (67), the maximum of the dual F �2 is
obtained. As the maximum of the dual is equal to the min-
imum of the primal, i.e., F �1 ¼ F �2, the optimal cost is ob-
tained as

F �1 ¼
0:2503ðw�5 � 0:2238Þ1:0032

ð0:3913� w�5Þ
1:5517ð0:2975� w�5Þ

0:4514

A01:5517C00:4514

B00:7524E00:2508

ð68Þ
A perusal of Eq. (65) reveals that as M varies between 0
and 1, w�5 varies between 0.2975 and 0.2238. Thus, w�5
has a narrow range 0.22386 w�5 60.2975. Combining Eqs.
(53) and (68) the optimal flow rate m* is

m� ¼ 0:2503ðw�5 � 0:2238Þ1:0032w�5
ð0:3913� w�5Þ

1:5517ð0:2975� w�5Þ
0:4514

A01:5517C00:4514

B00:7524E00:2508F 0

ð69Þ

Similarly, using Eqs. (50, 52, 60, 62 and 69), the following
equations are obtained:

x� ¼ 1:5275ð0:3913�w�5Þ
0:5172ð0:2975�w�5Þ

0:1505

ðw�5�0:2238Þ0:6677

B00:2508E00:4169

A00:5172C00:1505

ð70Þ

d� ¼ 0:2481ðw�5�0:2238Þ2:2572w�5
ð0:3913�w�5Þ

2:2413ð0:2975�w�5Þ
1:0156

A02:2413C01:0156

B01:6929E00:5643F 0

ð71Þ

The proceeding development is based on the assumption
that y, T2, and t2 are constants. The variation in these vari-
ables can be considered by an iterative procedure. The suc-
cessive iterative values of the temperatures T2 and t2 are
found to be oscillating if the usual iteration procedure is
carried out. Therefore, the following scheme is used so that
the number of steps needed to obtain the result can be
decreased.

1. Assume a value of D, d, m, T2.
2. Find t2 by using (39) and (40) with

t2 ¼ t1 � wCpaðT 2�T 1Þ
mCp

.
3. Find y using Eq. (26).
4. Find A0, B0, C0, E0, F0 using Eqs. (44)–(48).
5. Find M using Eq. (66).
6. Find w�5 using Eq. (67).
7. Find m* using Eq. (69).
8. Find x* using Eq. (70).
9. Find d* using Eq. (71).

10. Find Q by using Eq. (38).
11. Find D using Eq. (13).
12. Find T2 by using (39) with T 2 ¼ Q

wCpa
þ T 1.

13. Find t2 by using (40) with t2 ¼ t1 � Q
m�Cp

.
14. Find new T2 = (new T2 + old T2)/2.
15. Find newt2 = (new t2 + old t2)/2.
16. Repeat steps 3–15 till two successive y, T2 and t2 val-

ues are close.
17. Reduce d* and D* to the nearest commercially avail-

able size.
18. Find the actual value of y using Eq. (26).
19. Find the actual value of x* using Eq. (13).
20. Find the corrected values of A0, B0, C0, E0, F0 using

Eqs. (44)–(48).
21. Find the actual value of m* by using Eq. (69).
22. Find the actual value of Q by using Eq. (38).
23. Find actual T2 by using (39) with T 2 ¼ Q

wCpaþ T 1.
24. Find actual t2 by using (40) with t2 ¼ t1 � Q

m�Cp
.

25. Find P by using (30).
26. Find F1 by using (43).
27. Find the actual values ofw�1;w

�
2;w

�
3;w

�
4 and w�5 using

Eqs. (49)–(53).

4. Design example

It is desired to heat 1.512 kg/s of cold benzene from
300 K to the maximum temperature possible by using hot
toluene which is available at 344 K. The fluid properties
are: For benzene qa = 880 kg/m3; la = 0.00050 kg/ms;
Cpa = 1778 J/kg K; kpa = 0.1574 J/s mK; and for toluene
qp = 870 kg/m3; lp = 0.00041 kg/ms; Cp = 1817 J/kg K;
and kp = 0.1471 J/s mK. The fluid properties are assumed
to be constant with respect to temperature change ensuring
lp = lwp and la = lwa. For this operation three double
pipe heat exchangers of 6.096 m length are available. It is
assumed that the cost related to heat flow rate is 5.1$, that
to pumping is 1.09$ and with the utility in this case is 1.4$.
(i.e. C1 = 5.1$, C2 = 1.09$ and C3 = 1.4)$, (these costs may
differ from industry to industry). The standard heat trans-
fer rate, Q*, is 94092 J/s and it is required that the process
operates close to this. The minimum pumping power, P*, is
117 W. Find out the optimum values of inner pipe diame-
ter, outer pipe diameter and coolant flow rate to be used
for the heat exchangers which are to be connected in series.

The process stream, i.e. cold benzene in this case, is
taken in the outer pipe and the utility stream, hot toluene,
is kept in the inner pipe. For starting the algorithm, the ini-
tial values of outer diameter of inner and outer pipes were
assumed to be 0.042 m and 0.06 m, respectively. Therefore,
the initial value of y is d + D = 0.102 m. The initial flow
rate of the utility was assumed to be 3.6989 kg/s. The initial
outlet temperature of the process stream is assumed 335 K
and the iterations were carried out till two successive values
of y, T2 and t2 were obtained. These iterations have been
shown in Table 1. The values of the inner and outer diam-
eters of the pipes finally obtained are 0.027 and 0.049,
respectively. Thus the commercially available pipes of inner



Table 1
Design iterations: physical variables

Iteration number (1) w�5 (2) d(m) (3) m(kg/s) (4) Q (J/s) (5) D (m) (6) y (m) (7) T2 (K) (8) t2 (K) (9)

0 – 0.042 3.6989 – 0.06 0.102 335 330
1 0.2891 0.0259 1.2729 54106 0.0502 0.1989 327.5632 325.3028
2 0.2884 0.0259 1.1562 66242 0.0486 0.2488 326.1019 318.8854
3 0.2882 0.0269 1.2496 63225 0.0486 0.2683 324.8101 317.5192
4 0.2882 0.0268 1.2508 62814 0.0487 0.2754 324.0877 316.9403
5 0.2882 0.0268 1.2487 62881 0.0487 0.2779 323.7391 316.6127
6 0.2882 0.0268 1.2492 62872 0.0487 0.2787 323.5631 316.4562
7 0.2882 0.0268 1.2492 62868 0.0487 0.2787 323.4742 316.3798
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diameter 0.035 m and outside diameter of 0.0525 m can be
provided (The commercially available diameters are
adopted from fps system). The tube diameters are discon-
tinuous variables due to standardization. After adopting
the commercially available diameters the actual value of
the weights were found and the optimum value of the mass
flow rate was calculated by Eq. (69). The optimum values
were also checked for different pairs of the inner and outer
diameters. The values of the diameters taken were
D1 = 0.052 m and D2 = 0.041 m and d1 = 0.035 m, and
d2 = 0.027 m. Therefore, four combinations were tried with
varying the mass flow rates. The minimum cost comes out
to be for D = 0.052 m and d = 0.035 m at m = 1.2492 kg/s.
Therefore the coolant flow rate to be pumped is 1.25 kg/s.
The final value of the weights w�1;w

�
2;w

�
3;w

�
4 and w�5

comes out to be 0.4088, 0.2062, 0.0141, 0.0722 and
0.2882. Using Eq. (42) it can be seen that the contribution
of the heating flow rate in cost is around 60%.
5. Salient points

The outer diameter of the heat exchanger is around 1.8
times the inner diameter. The total heat transfer area to
be provided is around 6.159 m2 which suggests that double
pipe exchangers would be the best type of heat exchanger
equipment for the process. The fact, that the optimal
weight w�1 is greater than w�2, tells that the heat transfer coef-
ficient of the inner pipe is lower than that of the outer pipe.
The optimal weight w�4 is around five times w�3, which indi-
cates that for optimal conditions the power needed to make
the fluid flow in the annulus is quite larger than that needed
in the inner pipe (though the range of w�3 is larger than that
of w�4 but the optimal value obtained is five times less). Also
w�1 and w�2 are greater than the optimal weights for pressure
drop which simply indicates that the cost due to heat trans-
fer is more than the pumping cost and the cost of the utility
used. The outlet temperature of the process stream is
around 323 K which is well below the approachable tem-
perature indicating the practicality of the solution. The
efficiency of the exchanger as per the definition given by
[7] is around 63.6% which is reasonably high.

For a feasible solution to the problem the weights can lie
anywhere between the ranges: 0:3620 6 w�1 6 0:6642; 0 6
w�26 0:2478;06w�36 0:1118;06w�46 0:0826; and 0:22386
w�56 0:2975. These ranges indicate contributions of differ-
ent terms in the optimal objective function. Most dominant
term is the first term. This suggests that the heat transfer
rate has the maximum importance. Thus the solution con-
firms maximum heat flow rate. The least significant term is
the fourth term. It can as well be removed to yield a simple
solution.

6. Conclusion

It has been possible to formulate the optimal design of
heat exchanger as a geometric programming problem hav-
ing single degree of difficulty. Since the optimal design min-
imizes the weighted sum of the heat transfer cost, the
pumping cost and the cost of the utility used, by changing
the weights one can achieve higher heat transfer by appro-
priate changes.
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